skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thakkar, Aalok"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the problem of synthesizing a core fragment of relational queries called select-project-join (SPJ) queries from input-output examples. Search-based synthesis techniques are suited to synthesizing projections and joins by navigating the network of relational tables but require additional supervision for synthesizing comparison predicates. On the other hand, decision tree learning techniques are suited to synthesizing comparison predicates when the input database can be summarized as a single labelled relational table. In this paper, we adapt and interleave methods from the domains of relational query synthesis and decision tree learning, and present an end-to-end framework for synthesizing relational queries with categorical and numerical comparison predicates. Our technique guarantees the completeness of the synthesis procedure and strongly encourages minimality of the synthesized program. We present Libra, an implementation of this technique and evaluate it on a benchmark suite of 1,475 instances of queries over 159 databases with multiple tables. Libra solves 1,361 of these instances in an average of 59 seconds per instance. It outperforms state-of-the-art program synthesis tools Scythe and PatSQL in terms of both the running time and the quality of the synthesized programs. 
    more » « less
  2. Synthesizing relational queries from data is challenging in the presence of recursion and invented predicates. We propose a fully automated approach to synthesize such queries. Our approach comprises of two steps: it first synthesizes a non-recursive query consistent with the given data, and then identifies recursion schemes in it and thereby generalizes to arbitrary data. This generalization is achieved by an iterative predicate unification procedure which exploits the notion of data provenance to accelerate convergence. In each iteration of the procedure, a constraint solver proposes a candidate query, and a query evaluator checks if the proposed program is consistent with the given data. The data provenance for a failed query allows us to construct additional constraints for the constraint solver and refine the search. We have implemented our approach in a tool named Mobius. On a suite of 21 challenging recursive query synthesis tasks, Mobius outperforms three state-of-the-art baselines Gensynth, ILASP, and Popper, both in terms of runtime and accuracy. We also demonstrate that the synthesized queries generalize well to unseen data. 
    more » « less